
Deep Space Maneuver

Triton Encounter

Magnetometer

Langmuir Probe

Infrared and Visible Imager

Plasma Spectrometer

Trajectory
Unique trajectory design enables multi-flyby mission at Triton

The Architecture of Nautilus:
A Multi-Flyby Mission to Triton

Background: Why Triton?
Neptune's moon, Triton, exposed beautiful, unique terrain to Voyager 2's flyby in 1989. The spacecraft 
imaged active features on human time scales, like plumes and an ionosphere. However, the visit 
developed more questions than it answered. What is the nature of its plumes, cantaloupe terrain, and 
subsurface ocean? Which unique features can we attribute to its retrograde, inclined orbit due to its 
origin as a captured Kuiper Belt object? Nautilus, presented here, is a multi-flyby mission concept 
to Triton. When considering such a mission, multiple challenges arise, balancing the spacecraft's 
scientific and operational capabilities, launch vehicle energy, and mission time. Here, we show the 
configuration of a proposed multi-flyby mission with a launch window in late 2042. The 
instrumentation package chosen relies on robust heritage from similar-class mission spacecraft and 
innovative subsystems that add flexibility to spacecraft operations. The next opportunity to observe a 
sunlit southern hemisphere will not occur for another Neptune year (165 Earth years), driving the need 
for such a mission to be considered and selected soon.
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Launch Details
Launch date August 3, 2042

C3 39.1 km2/s2

Launch window 
flexibility

±10 days;  up to +3 C3 

Mission duration Cruise: 14.7 years
Science: 3 years

Cruise trajectory Earth-Venus-Venus-Earth- 
Jupiter-Neptune

Neptune Orbital 
Insertion
Delta-V

2,018 m/s

Considerations/Future Tradespace
● The Jupiter flyby design requires a radiation hardened vault for sensitive electronic components. This 

vault significantly increases spacecraft mass. Increasing Jupiter flyby distance can decrease spacecraft 
mass while increasing cruise duration.

● Surface feature pushbroom imaging at closest approach, where relative velocity is highest, exceeds an 
achievable spacecraft slew rate. To reduce slew rate requirements, a scanning mirror could be added to 
the infrared and visible imager.

● A ~15 year cruise time presents significant risk for spacecraft performance and requires additional 
qualification and accelerated lifetime testing. Additionally, to retain personnel from launch to the 
science tour phase necessitates additional knowledge transfer procedures.

● The launch window in 2042 is essential to observe the southern hemispherical, periodical, sunlit portion 
of Triton. This coincides with a favorable configuration of Earth, Venus, and Jupiter for gravity assists.

● Significant advances in computation, propulsion, and power management over decades until launch can 
mean an improvement in spacecraft autonomy at the risk of flight hardware inexperience.

Concept of Operations
Multi-flyby trajectory explores wide range of scientific questions
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Tour Details
Science flybys 22
Max. velocity of Triton flybys ~4.6 km/s
Initial Time between Triton flybys 6 - 23 weeks
Time between flybys after all DSMs 2 - 6 weeks

Spacecraft end of life Neptune entry 
disposal

Total DV 2,795 m/s

Tour DV 199 m/s 

Disposal DV 100 m/s 

Mission deterministic DV 2,475 m/s

Mission statistical DV 220 m/s 
(140+30+50) 

Spacecraft Configuration
Outer solar system explorer powered by dual Next Gen RTGs

Science Objectives
1) Subsurface Ocean
Determine if Triton has a subsurface ocean and, if one exists, determine 
the mechanism sustaining it, focusing on the possibility of obliquity tides.
2) Atmosphere and Ionosphere
Determine whether ionization and escape processes in Triton’s 
ionosphere are driven by precipitation of magnetospheric electrons or 
solar radiation.
3) Surface Geology
Determine if geologic features (e.g. cantaloupe terrain and walled plains) 
are formed or shaped by internal or external processes.
4) Metallic Core
Determine whether Triton has a metallic core, which may be a 
consequence of capture.
5) Plumes
Determine whether Triton’s plumes are the result of solar irradiation, 
melting volatiles caused by internal heat, or cryovolcanism.
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Pre-Decisional Information - For Planning and Discussion Purposes Only

Heritage: JUICE JDC3

Objectives: 2, 5
Range: 10-30,000 eV, 1-30 amu

Resolution:  15% ΔE/E, 28 M/ΔM

Heritage: New Horizons Ralph2

Objectives: 1, 3, 5
Range: 350-850 nm (Vis)

1.25-2.5 µm (IR)
Resolution: 20 m/px (Vis)

200 λ/Δλ, 54m/px (IR)

Heritage: MAVEN LPW4

Objectives: 1, 2
Range: -5-5 V, 0-150 µA
Resolution: 25 mV, 1nA

Heritage: New Horizons Alice1

Objectives: 2, 5
Range: 60-200 nm

Resolution: 1 nm/px, 400 m/px

Heritage: MAVEN MAG5

Objectives: 1, 2
Range: 0-10,000 nT
Resolution: 0.5 nT
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